Syntax Tree

Abstract Syntax Tree

Implementation via Abstract Classes 1n Java

Abstract Classes 1n Java: Definition

 Abstract classes may or may not contain abstract methods, 1.e.,
methods without body
* public abstract void get();

e If a class has at least one abstract method, then the class must be
declared abstract.

e If a class 1s declared abstract, 1t cannot be instantiated.

* To use an abstract class A, another class B inherits from A, and B
provides implementations to the abstract methods 1n 1it.

Example

Download and compile/run the example code for Employee.java and
AbstractDemo.java. Do this in a terminal window.

cd [directory files are installed]
Javac Employee.java
Javac AbstractDemo.java

Java AbstractDemo

What happens?

Examine code for
Employee/AbstractDemo

* The Employee class has three fields, seven methods and one
constructor.

* We cannot create an Employee object because the class 1s abstract.

* We use the Employee class through iheritance — subclasses that
inherit the structure of the Employee class.

Fixing the Instantiation Problem

Next, we define a child class of Employee, Salary class, and
compile a second version of the AbstractDemo2.java code

jJjavac Employee.java Salary.java AbstractDemoZ.java

Java AbstractDemo?Z

Examine Code for
Salary/AbstractDemo?2

public Salary(String name, String address, int number, double salary)

d

super(name, address, number); //use Employee constructor

setSalary(salary);

public void mailCheck() {
System.out.println("Within mailCheck of Salary class ");

System.out.println(''Mailing check to " + getName() + " with
salary " + salary); //use Employee method getName()

b

AST

Abstract methods

* If you want a class to contain a particular method but you want the
actual implementation of that method to be determined by child
classes, you can declare the method 1n the parent class as abstract.

* This 1s a case of using inheritance for specification.

* Example - Add this abstract method to Employee.java:

public abstract class Employee {
private String name;
private String address;
private int number;
public abstract double computePay () ;

// Remainder of class definition

Abstract methods

Declaring a method as abstract has two consequences —
* The class containing 1t must be declared as abstract.

* Any class inheriting the current class must either override the
abstract method or declare itself as abstract.

Modity the example

* Modify Salary.java as follows

/* File name : Salary.java */
public class Salary extends Employee {
private double salary; // Annual salary

public double computePay () {

System.out.println ("Computing salary pay
for " + getName());

return salary/52;

}

// Remainder of class definition

 Call computePay for one of the instantiated Salary objects

Why Abstract Classes?

* The next phase 1n creating a parser for PDef requires the
construction of an Abstract Syntax Tree.

* This construction 1s best done using inheritance and abstract
classes.

PDef-Lite Grammar Rules

Program -2 Block eofT

Block —> IcbT StmtList rcbT

StmtList -2 Stmt { commaT Stmt }

Stmt —> Declaration | Assignment | Block
Declaration = typeT identT

Assignment = identT assignT identT

abstract SyntaxTree

SyntaxTreeDebug debug

JAN

abstract StmtST
DeclarationST AssignmentST BlockST
Token type Token target LinkedList<StmtST> list
Token name Token source BlockST(
DeclarationST(Token,Token) AssignmentST(Token, Token)

Figure 14.3: UML Class Diagram of the Syntax Tree for PDef-lite

AST

Classes 1n Code Distributed for Project 3

public abstract class SyntaxTree {

protected SyntaxTreeDebug debug = new SyntaxTreeDebug/() ;

public abstract class StmtST extends SyntaxTree { }

public class BlockST extends SyntaxTree {
private LinkedList<StmtST> list;
public BlockST (LinkedList<StmtST> 1) { list=1l; }
public void traverseST () {
// for (StmtST st : list)
// st.traverseST () ;
System.out.println ("BlockST") ;

Example: PDef program and AST

{ {floatr,r=s,ints }, {intk)} - { { X1,X2, X3}, {YI}}

BlockST LinkedList BlockST LinkedList DeclarationST
list list

Y
\ 4

Y

type "float"

A

A - C - name 'r’

‘ BlockST
B E
list ! .
D AssignmentST
target "r"

LinkedList
1 source “g"

F

DeclarationST
type "int"

) 4

name B

DeclarationST
type "int"

Y

name k"

AST

Traversing the AST

// code for DeclarationST.traverseST
public void traverseST () {

System.out.println ("DeclarationST") ;

// code for BlockST.traverseST
public void traverseST () {
for (StmtST st : list)
st.traverseST() ;

System.out.println ("BlockST") ;

Traversing the AST - traverseST

SyntaxTree The method is declared abstract.
StmtST Inherits the method from SyntaxTree.

DeclarationST | This is a leaf node so display the name
DeclarationST.

AssignmentST | This is a leaf node so display the name
AssignmentST.

BlockST This is an internal node and all links to sub-
trees are stored in the data member list.
The first thing we do is to step through list
and call traverseST on each of its elements,
thus displaying each subtree referenced in the
list. Then we display the name BlockST.

AST

PDef-Lite parser 1n action

{inta, floatb, {a=b, {intx,a=x},{b=a} },a=b}

Program parsed!
Here's the Syntax Tree
DeclarationST
DeclarationST
AssignmentST
DeclarationST
AssignmentST
BlockST
AssignmentST
BlockST
BlockST
AssignmentST
BlockST

