
Syntax Tree
Abstract Syntax Tree

Implementation via Abstract Classes in Java

Abstract Classes in Java: Definition
• Abstract classes may or may not contain abstract methods, i.e.,

methods without body
• public abstract void get();

• If a class has at least one abstract method, then the class must be
declared abstract.

• If a class is declared abstract, it cannot be instantiated.

• To use an abstract class A, another class B inherits from A, and B
provides implementations to the abstract methods in it.

AST

Example
Download and compile/run the example code for Employee.java and
AbstractDemo.java. Do this in a terminal window.

cd [directory files are installed]

javac Employee.java

javac AbstractDemo.java

java AbstractDemo

What happens?

AST

Examine code for
Employee/AbstractDemo

• The Employee class has three fields, seven methods and one
constructor.

• We cannot create an Employee object because the class is abstract.

• We use the Employee class through inheritance – subclasses that
inherit the structure of the Employee class.

AST

Fixing the Instantiation Problem

Next, we define a child class of Employee, Salary class, and
compile a second version of the AbstractDemo2.java code

javac Employee.java Salary.java AbstractDemo2.java

java AbstractDemo2

AST

Examine Code for
Salary/AbstractDemo2

public Salary(String name, String address, int number, double salary)
{

super(name, address, number); //use Employee constructor
setSalary(salary);

}

public void mailCheck() {
System.out.println("Within mailCheck of Salary class ");
System.out.println("Mailing check to " + getName() + " with

salary " + salary); //use Employee method getName()
}

AST

Abstract methods
• If you want a class to contain a particular method but you want the

actual implementation of that method to be determined by child
classes, you can declare the method in the parent class as abstract.
• This is a case of using inheritance for specification.
• Example - Add this abstract method to Employee.java:

public abstract class Employee {

private String name;

private String address;

private int number;

public abstract double computePay();

// Remainder of class definition

}

AST

Abstract methods

Declaring a method as abstract has two consequences −

• The class containing it must be declared as abstract.

• Any class inheriting the current class must either override the
abstract method or declare itself as abstract.

AST

Modify the example
• Modify Salary.java as follows
/* File name : Salary.java */
public class Salary extends Employee {

private double salary; // Annual salary
public double computePay() {

System.out.println("Computing salary pay
for " + getName());

return salary/52;
}

// Remainder of class definition
}

• Call computePay for one of the instantiated Salary objects

AST

Why Abstract Classes?
• The next phase in creating a parser for PDef requires the

construction of an Abstract Syntax Tree.
• This construction is best done using inheritance and abstract

classes.

PDef-Lite Grammar Rules
Program à Block eofT
Block à lcbT StmtList rcbT
StmtList à Stmt { commaT Stmt }
Stmt à Declaration | Assignment | Block
Declaration à typeT identT
Assignment à identT assignT identT

AST

AST

Classes in Code Distributed for Project 3
public abstract class SyntaxTree {

protected SyntaxTreeDebug debug = new SyntaxTreeDebug();

}

public abstract class StmtST extends SyntaxTree { }

public class BlockST extends SyntaxTree {

private LinkedList<StmtST> list;

public BlockST(LinkedList<StmtST> l) { list=l; }

public void traverseST() {

// for (StmtST st : list)

// st.traverseST();

System.out.println("BlockST");

} }

AST

Example: PDef program and AST
{ { float r, r = s, int s }, { int k } } - { { X1, X2, X3 }, { Y1 } }

AST

Traversing the AST
// code for DeclarationST.traverseST

public void traverseST() {

System.out.println("DeclarationST");

}

// code for BlockST.traverseST

public void traverseST() {

for (StmtST st : list)

st.traverseST();

System.out.println("BlockST");

}

AST

Traversing the AST - traverseST

AST

PDef-Lite parser in action
{ int a, float b, { a = b, { int x, a = x }, { b = a } }, a = b }

Program parsed!
Here's the Syntax Tree
DeclarationST
DeclarationST
AssignmentST
DeclarationST
AssignmentST
BlockST
AssignmentST
BlockST
BlockST
AssignmentST
BlockST

AST

